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a b s t r a c t

This paper introduces a geometric approach for assessing color harmony of a signboard, and color
coherence of a signboard with the environment. We propose to incorporate visual saliency as an
inherent color characteristic residing in the image space, to better cope with the attention mechanism
when people view a scene. In doing so, our color harmony models consider saliency-weighted color
differences and area balance in CIELab color space. We collect 5.2 K valid subjective ratings on
375 diverse signboards in the real world, and translate them into quantitative measures for model
construction. Experimental results show that our models improve the overall performance, especially
for modeling color coherence between a signboard and the environment. The study also reveals that
color combinations with similar chroma but distinctive lightness lead to harmonic signboards, while
simple color patches in accordance with local context contribute to environment-coherent signboards.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Improving design quality of outdoor signboard can benefit
variety of applications, such as to convey brand information

o customers [1,2], and to create people-friendly streets [3,4].
owever, despite its importance, there have been few studies
onducted on understanding what factors affect people’s impres-
ion of outdoor signboard, which are considerably hindered by
articular challenges including the lack of dataset, the diversity
f signboard design, and the complexity of street environments.
s such, some study [5] considers simple heuristics of only a
mall amount of color combinations, which fails to account for
he complex reality.

The advancement of various sensing technologies and data
ervices promotes large-scale quantitative measurements of ur-
an environments. For instance, Google Street View (GSV) [6]
ervice provides visual aspect information of urban space from
ifferent geographic positions. There have been continuous ef-
orts on unveiling fine-scale characteristics of urban streets using
SV images, including to support interactive visual exploration
f street views (e.g., [7,8]), and to examine human perceptions on
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visual elements in street views (e.g., [9,10]). Adding on to this line
of trend, we build a new dataset of diverse signboards collected
from various cities in the world.

With the data, this work seeks to strengthen our understand-
ing of human perception on signboard design. We primarily focus
on examining color harmony for outdoor signboards, since color
is a provocative visual stimuli and plays an important role on
signboard design [11]. We decompose the problem into two
subtasks: (i) to explore color harmony of a single signboard, and
(ii) to analyze color coherence of a signboard with the street
comprising the signboard. This is nevertheless a challenging task.
First, the design space of color usage is huge, thus identifying
categories of harmonic color combinations (e.g., [12–14]) is infea-
sible. Second, the complex street environment where an outdoor
signboard belongs to calls for effective color extraction and mod-
eling algorithms. Last but not least, most if not all studies on
color harmony derive color features in certain color spaces, whilst
omits the fact that people perceive colors in an image space.

This work introduces a geometric approach, which has been
widely employed in the graphics and vision communities to eval-
uate human perception on colors (e.g., [15–17]), for building color
harmony models for signboards. Despite its popularity, most of
existing studies conduct geometric analysis on noiseless images,
whilst neglecting the complex lighting and shading conditions
in the street. To address the limitations, we propose to incor-
porate visual saliency, which is an inherent color characteristic
residing in the image space, to better cope with the attention
mechanism when people view a scene. Given a street-view image
with multiple signboards as inputs, we extract a set of primary
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olor patches for each signboard and the street, using a k-means
clustering weighted by the saliency of pixels attached to each
color patch. From the primary color patches, we derive a list of
color features including saliency-weighted color differences and
area balances, in CIELab color space. Next, we employ LASSO
regression to construct color harmony models that fit the color
features with human judgments of signboard design by archi-
tects. Our study shows that conventional color usage guidelines,
such as that colors harmonize with minor chroma difference but
large lightness difference, also apply to outdoor signboard design.
Moreover, our study also suggests that many Asian cities can
improve their street landscapes by adopting simple color patches
similar to the context of the street.

The main contributions of this work include:

• We build a new dataset of diverse real-world signboards in
different cities, and diverse perception ratings on color har-
mony of signboard design by different human subjects. The
dataset will be released publicly to foster future research on
color harmony as well as signboard design.

• We introduce saliency-aware color harmony models for as-
sessing color harmony of a signboard, and color coherence
of a signboard with the environment. Experimental results
demonstrate that saliency-weighted color features can im-
prove the overall performance, especially when modeling
color coherence between a signboard and the environment.

• Our study reveals important color characteristics that affect
human perception on signboards, and different practices of
signboard design over geography. Based on the findings,
we propose several design recommendations for improving
signboard design.

2. Related work

2.1. Signboard design

Baker [18] categorized elements of a store environment into
three types: social factors, design factors, and ambient factors.
Follow-up studies (e.g., [11,19]) revealed that store environment
would mediate consumer emotions and affect their purchase
behaviors. Signboard, as a design factor firstly perceived by con-
sumers, exerts a substantial effect on consumer perception and
subsequent feelings of a store. For example, Henderson et al. [1]
found that signboards that are perceived as elaborate, natural,
and harmonious bring positive effect on store impression. As
such, store owners often feel the need for remodeling and replac-
ing outdoor signboards [2].

Signboards are also important elements of street scenes, which
should be considered as a public product. Signboard design shall
assort with the street landscape, to make the street looks ap-
pealing. In contrast, poorly designed and visually unattractive
signboards would hamper people’s willingness to enter a mar-
ket space [20]. Many efforts have been conducted to improve
signboard design, to strengthen the city identity and attractive-
ness of the business area [4]. Therefore, signboard design is not
only a stand-alone study, but shall also be considered from the
perspective of being an ingredient of the street [3].

Though critical for store perception and street appealingness,
assessment on the visual perception of signboards is mostly ne-
glected. Won et al. [5] conducted a closely related study, revealing
the impact of color combinations on harmony and legibility of
signboards. However, they categorized all perceived colors into
18 average color names [21], yielding a small amount of color
combinations. Moreover, human perceptions on color names may
be inconsistent for some shades of a color or across different
cultures [22,23]. Instead, this study builds upon color features in a
geometric manner, therefore our proposed color harmony models
can be more reliable and generalizable.
26
2.2. Color harmony models

Color is a provocative visual stimuli that affect much of what
we perceive and feel about an image. Due to its ubiquity, color
has been extensively exploited in many applications. A color
appearance model seeks to describe the perceptual aspects of
human color vision in a mathematical way [24], by modeling
vision agnostic of many of the complexities that may affect peo-
ple’s perception of colors in practice. Color harmony reflects the
aesthetic pleasure of certain color combinations. It can be adopted
as a key metric to assess the aesthetic quality of photograph
and video images [25,26]. Nevertheless, color harmony is a sub-
jective property that can be altered by culture and education
backgrounds of viewers. Therefore many studies have been car-
ried out to transform harmony evaluation from subjectively to
objectively. A widely adopted approach is Matsuda’s harmonic
color templates [12], which include 8 types of hue distributions
(e.g., I type, V type) and 10 types of tone distributions (e.g., value
contrast, triangle contrast) in Munsell color space [27]. Based on
the templates, many design tools for improving color harmony of
images were developed, e.g., [13,14].

An alternative approach is the Moon and Spencer model [28],
which suggests that harmonic colors satisfy the following con-
ditions: (i) the interval between any two colors is unambiguous,
and (ii) colors are so chosen that the points representing them in
a (metric color) space are related in a simple geometric manner.
More specifically, harmonic colors give sensations of identity -
the same color, similarity - a resembling color, or contrast - a
target color that is significantly different from a chosen color.
Since the harmonic color templates can also be defined in a
geometric manner, the Moon and Spencer model can be regarded
as a more general approach. Several studies [29,30] revealed close
associations between Matsuda’s templates and the postulates of
the Moon and Spence model. Follow-up studies examine more
geometric features and metrics, and develop color perception
models for various types of images, including graphic art and
design [15,16] and data visualization [31–34].

Our study also adopts the geometric approach, by considering
color differences and area balance in the CIELab color space. Nev-
ertheless, due to dynamic street environment, outdoor signboards
exhibit more complex geometric patterns than graphic designs
and visualizations. Existing models are not directly applicable on
our dataset. Instead, we propose to take visual saliency - an inher-
ent color characteristic that reflects how people view a scene, into
consideration when computing the color features. Experimental
results demonstrate superior performance by considering the
saliency.

2.3. Visual saliency

Humans can rapidly direct gaze and select the most relevant
information from an image. Understanding and modeling the
attention mechanism has attracted increasing attentions in vision
studies. Saliency reflects which areas of an image will draw a
viewer’s attention, by analyzing the visual features of an image.
The past 20 years have witnessed a rapid development of saliency
detection techniques, from conventional image processing meth-
ods [35] to recent deep learning approaches [36]. The ultimate
goal of these techniques is to capture the structure and function
of the human visual cortex. Taking an input image, saliency
detection techniques output a saliency map that assigns a value
of a human viewer’s attention to each pixel in the image [37].
Studies have shown that saliency can be utilized as a visual guide
for various graphics applications, such as to improve graphics [38]
and visualization [39] design.

This work adopts a conventional saliency model [35] to com-
pute saliency maps, and takes saliency into consideration when
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easuring color features. In doing so, we combine human per-
eived color features in both image space and color space. We
emonstrate the effectiveness of our approach using quantitative
omparisons to ablation color harmony models without consid-
ring saliency.

. Background and research goals

This work is motivated by practical requirements from a col-
aborating urban planner specializing in data-informed urban de-
ign. In his work, the collaborator is often asked to assess Q1 if
signboard is well designed or not, and Q2 whether a signboard
ccords with the street. Among many components including text,
ogo, and color that affect the quality of signboard design, we
pt to start by analyzing color harmony, in consideration of the
ollowing facts. First, color is an intrinsic visual element of all
ignboards, whilst text and logo may not be available in certain
ignboards. Second, people’s perceptual assessment on text and
ogo would require basic knowledge of the language and the
ulture, hindering large-scale data analysis. In contrast, color
armony is mainly determined by color combinations [28], thus
eing more independent on culture and education backgrounds.
his allows us to conduct quantitative comparative analysis-a
undamental approach in urban design, on designs of signboards
rom different cities in the world.

Though numerous efforts have been conducted on modeling
olor harmony, we found few to no studies specific to outdoor
ignboards. Won et al. [5] simplified the problem by analyzing
armony ratings of only a limited number of color combinations.
nstead, we seek to build more reliable and generalizable models,
o support:

• G1: to identify what color combinations make an outdoor
signboard look harmonic, for Q1.

• G2: to determine what color features make an outdoor
signboard look coherent with a street, for Q2.

. Data preparation

To build color harmony models for outdoor signboards, we
repare a new dataset including street-view images, signboards,
nd color harmony judgments by human subjects.

.1. Street views and signboards

We developed an automatic approach to crawling street-view
mages, followed by manual annotation of signboards in the im-
ges. First, we downloaded a street area from OpenStreetMap,2
nd applied a flood-fill algorithm that recursively went through
he entire street network every 50 m, starting from a randomly
elected location. The step outputs a list of sampling locations
ith geographic information of latitude (lat) & longitude (lon).
e passed each pair of (lat, lon) into GSV API, and downloaded

ide-view images that are perpendicular to the street direction
t each sampling position. Next, we utilized a manual labeling
ool [40] to annotate signboards in each street-view image. Before
nnotating, we omitted the following signboards, as suggested
y the collaborating architect: (i) too small signboards that are
ot clearly visible; (ii) signboards placed on see-through windows
r doors; (iii) temporary signboards that may be replaced daily;
nd (iv) incompletely displayed signboards or signboards in tilted
erspectives.
To support comparative analysis of diverse signboards, we

ecided to crawl street-view images from different cities. We

2 www.openstreetmap.org.
27
selected eight well-known commercial streets in the world, in-
cluding Sai Yeung Choi Street in Hong Kong (denoted as HK 1),
Tung Lo Wan Road in Hong Kong (HK 2), Ximending in Taipei
(Taipei), Itaewon-dong in Seoul (Seoul 1), Myeong-dong in Seoul
(Seoul 2), Shinsaibashi-Suji Shopping Street in Osaka (Osaka), Fifth
Avenue in New York City (NYC), and Via Monte Napoleone in
Milan (Milan). More streets were selected in Asia, as Asian cities
typically have more signboards in commercial streets, and many
of them can be improved.

Table 1 presents the number of street views and signboards in
each street. Notice that the streets are sorted in descending order
by the average number of signboards in each image. Clearly, Hong
Kong streets have higher average numbers of signboards than the
other streets. In total, we collected 120 street-view images and
394 signboards from eight different streets.

4.2. Color harmony judgments

To enrich diversity of color harmony judgments, we recruited
eight architects (3 males, 5 females, age: 22.75± 0.46) as partic-
ipants to rate the signboards. They are all certified architects in
China with professional degrees of bachelor or master of architec-
ture. The participants are well trained in urban design and color
usage, with professional experience in street renewal projects and
street design codes. Their feedbacks can be utilized as guidelines
for improving signboard design. The participants have no color
vision deficiency, in fact, are sensitive to color difference. The
architecture training promotes that all the participants have sim-
ilar aesthetic perspective and color preferences beyond cultural
background. The study was eligible for exempt research as it
involves minimal to no risks to the participants, as reviewed by
the research ethics board in the school.

We asked the participants to rate on color harmony of the
signboard, and color coherence of the signboard with the street, to
ollect judgments for G1 and G2, respectively. Due to the COVID-
9 pandemic, the study was performed virtually using a web
nterface as shown in Fig. 1. The interface included a street-view
mage on the left, with all the signboards being rated marked in
ifferent colors. Questions for the signboards were presented on
he right. Here, we used 7-point Likert scale questions ranging
rom ‘1-absolutely inharmonic’ to ‘7-absolutely harmonic’. We
andomly ordered the street-view images among the participants
o counter-balance effects of the first impression bias. The partic-
pants were reminded to take a break every 30 min and at any
ime when they felt tired.

We collected a total of 6,304 color harmony judgments (8
articipants × 394 signboards × 2 questions). On average, each

participant spent about 3.2 h to finish the study, with the average
time to complete one image was 1.6 min and one signboard was
29.2 s. At the end of the study, we asked the participants to de-
scribe their strategy for making the judgments. Each participant
was compensated with CNY ¥200.00 (∼USD $30) after the study.

4.3. Data cleaning

Next, we cleaned up the collected dataset by removing incon-
sistent color harmony judgments. We measured the consistency
from the following two perspectives.

(1) Consistency between repeated measurements. We conducted
repeated measurements, and computed the test-retest reliability
of each participant, to evaluate whether the subjective judgments
by the same participant were consistent. We selected a ran-
dom set of 40 samples from the 394 signboards, and asked the
participants to re-rate the samples after two weeks of the first
study. Next, we calculated the Pearson correlation coefficient, for

each participant’s judgments obtained from the before and after

http://www.openstreetmap.org
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Table 1
Number of street-view images and signboards in each street studied in this work.

HK 1 HK 2 Taipei Seoul 1 NYC Milan Osaka Seoul 2 SUM

Street view 20 19 13 16 14 11 13 14 120
Signboard 87 77 50 51 39 28 30 32 394
Average 4.35 4.05 3.85 3.19 2.79 2.54 2.31 2.29 3.28
Fig. 1. The interface for collecting color harmony judgments from people.
xperiments. The coefficient value ranges in [−1, 1], where 0 in-
icates no relationship and +/-1 indicate perfect positive/negative
orrelations between two sets of observations.

• The results of six participants had strong positive correla-
tions with the coefficients greater than 0.75.

• The results of one participant had a moderate correlation
with the coefficient of 0.54 for color coherence judgments.
In the follow-up meeting, the participant explained that
he was not careful enough in the second study, whilst the
judgments for the first study were more reasonable.

• The results of one participant had low correlation coeffi-
cients around 0.3 for both color harmony and color coher-
ence judgments, and the participant could not explained
the reason. Therefore, we excluded the judgments by the
participant for further analysis.

(2) Consistency among participants. For each signboard, we fur-
her analyzed the variances of color harmony judgments among
he remaining 7 participants. Here, we checked the consistency
ased on the measurements of standard deviation (SD) of color
armony judgments (SDhar ), and that of color coherence judg-
ents (SDcoh). The mean µSDhar of SDhar is 1.15 with a standard
eviation σSDhar of 0.35, while µSDcoh of SDcoh is 1.22 with a

standard deviation σSDcoh of 0.38. Both µSDhar and µSDcoh are small,
indicating that most signboards received consistent ratings by dif-
ferent participants. Yet, there were some outliers with SD values
above µSD + 2σSD. We identified 9 signboards as SDhar outliers,
and 10 signboards as SDcoh outliers. These 19 signboards were
removed from the dataset. We took the remaining 375 signboards
for further analysis.

In the end, there remain 5250 valid color harmony judgments
(7 participants × 375 signboards × 2 questions).

5. Saliency-aware color harmony models

We represent a street-view image (Fig. 2(a)) as an RGB image
Ist ∈ R3×W×H with dimensions W ×H . The image Ist has multiple
signboards {SB1, . . . , SBn}, and each signboard SBi contains a set
of pixels {pSBij }. We apply a conventional saliency model [35] to
compute a saliency map (Fig. 2(b)) Isal ∈ RW×H for the image Ist ,
where a pixel psal ∈ R+ denotes the saliency value that reflects
how much the pixel draws a viewer’s attention. We then crop the
region in the saliency map for each signboard SBi, yielding a set of
saliency values {pSBisalj

} corresponding to {pSBij }. Based on the inputs,
we derive a list of saliency-weighted color features to construct
color harmony models.
28
5.1. Color representation

To build color harmony models, we select a suitable color
space that correlates well with human judgments. Here, we use
CIELab [41], a color space comprised of three primary axes, L∗

(lightness), a∗ (the amount of red or green), and b∗ (the amount of
blue or yellow), for two reasons. First, CIELab color space adopts a
simple grid-based scheme, bringing about the computational sim-
plicity of color difference. Second, CIELab is a three-dimensional
perceptual color space based on opponent process theory [42],
where perceived difference correlates well with Euclidean dis-
tance in CIELab color space. The properties make CIELab a popular
color space commonly used in practice, such as to model color
compatibility [15] and color difference [17].

We use OpenCV-Python3 library that specifies L∗, a∗, and b∗ in
the range [0, 255]. There are however too many unique colors in
the color ranges, rendering difficulty in processing the colors. We
choose to bin the colors, in a way that has a minimal effect on
human judgments, meanwhile improves computation efficiency.
In consideration of the Just Noticeable Difference (JND) [43], we
use a bin size of 8 units for which each bin size has a radius of
1∼2 JND, so humans can hardly differentiate the colors within
the same bin. For each bin we take the central color ci, and
we compute a value sal(ci) that counts the saliency of all pixels
associated with ci. Fig. 2(c) shows the street view by mapping
original colors in Fig. 2(a) to the corresponding colors after bin-
ning. Marginal differences can be observed, yet the number of
colors to be processed is dramatically reduced from millions to
32,876.

Though the number of color bins becomes smaller, we see
sal(ci) for most color bins are zero. This is because typically
a small number of colors is used when designing signboards,
which are referred as primary color patches in this work. In line
with previous works (e.g., [44,45]), we apply a weighted k-means
clustering to derive primary color patches. To make the clustering
deterministic, instead of being sensitive to initialization [46], we
perform k-means clustering as follows. First, we initialize the
first mean as the color ci with the largest saliency sal(ci). Then
we attenuate all other weights sal(cj) by a decaying factor in
accordance to the distance from ci to cj. Next we choose the
color with the highest saliency, repeating the process until k
initial means have been chosen. For each cluster, we compute
a saliency-weighted mean color patch Ci, with a saliency sal(Ci)

3 https://pypi.org/project/opencv-python/.

https://pypi.org/project/opencv-python/
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Fig. 2. Procedure of extracting primary color patches for signboards in an input street-view image.
summing up all color saliences in the cluster. Similarly, we also
extract a set of color patches that dominate human-perceived
colors for a street view. We find that ksb ∈ [3, 7] works well
or typical signboards, and choose ksb = 5 by default; and kst ∈

[10, 20] works well for street views, and choose kst = 15 by
default. Fig. 2(d) presents extracted color patches with associated
saliences for the signboards in Fig. 2(c). All signboards have a
dominant color (typically background) and a few subordinate
colors.

5.2. Color features

5.2.1. Color harmony features
Given primary color patches {C sb

i } of a signboard, we compute
two types of color features in terms of color difference and area
balance, to model color harmony of a signboard.

• Color difference. Harmonic colors give sensations of identity,
similarity, or contrast [28]. All the sensations can be mod-
eled as difference between colors: If the difference is small,
two colors are regarded as similar or even identical, whilst
large difference indicates contrast colors. Here we compute
geometric distance of pairwise colors to capture the color
difference.
First, separate components difference [47] measures the
differences of two colors in CIELCh color space-a cubic
representation of CIELab color space. Specifically, L∗ denotes
lightness component as the same in CIELab, C∗ denotes
chroma (relative saturation), and h◦ denotes hue angle.
The difference of C sb

i &C sb
j in a component can be com-

puted as absolute difference, e.g., lightness difference is
∆L∗(C sb

i , C sb
j ) = |L∗(C sb

i ) − L∗(C sb
j )|. We also compute ∆C∗

(C sb
i , C sb

j ) and ∆h◦(C sb
i , C sb

j ), and take all components differ-
ences into consideration.
Second, holistic difference interval is defined as the Euclidean
distance between C sb

i &C sb
j in CIELab color space:

∆E(C sb
i , C sb

j ) =(∆L∗(C sb
i , C sb

j )2 + ∆a∗(C sb
i , C sb

j )2

+ ∆b∗(C sb
i , C sb

j )2)
1/2

,
(1)

where ∆L∗, ∆a∗, and ∆b∗ denote the differences of C sb
i &C sb

j
in L∗, a∗, and b∗ components, respectively.
Both separate components difference and holistic difference
interval are computed for a pair of colors. For the color
patches {C sb

i }, we compute pairwise difference for each pair
of colors, and then take the minimum, weighted average,
and maximum differences into consideration. Specifically,
the weighted average differences are computed based on the
sum of saliences of the pairwise colors.

• Area balance. Proper balance of (color) areas is an empirical
rule in design. Munsell [27] stated that ‘the stronger the
color . . . the smaller must be its area; while the larger the
area, the grayer the Chroma’. Moon and Spencer [28] also
29
encouraged a balance of the product of each area and adap-
tion point when viewing a color patch. Here we consider
features related to area balance as follows.
First, the participants’ feedbacks indicate that ‘salient col-
ors’ have a major influence on color harmony judgments,
and saliency reflects which areas of an image will draw a
viewer’s attention. We compute the saliency sal(C sb

i ) cap-
tured by the color patch C sb

i , by adding up saliences of all
pixels attached to C sb

i . We adopt the concept of information
entropy to measure the balance of saliency, as follows:

Hsal({C sb
i }) = −

∑
i

P(sal(C sb
i )) · log P(sal(C sb

i )), (2)

where P(·) denotes the probability of a color patch in terms
of its saliency.
Next, Granger [48] deducted that Moon and Spencer’s pos-
tulate on area balance of color patches [28] can be quantita-
tively described in Munsell’s term [27], as the scalar moment
(mom). Specifically, the scalar moment can be computed as
the product of the area and adaption point of a color patch:
s
{
(chroma)2 + 64(value − 5)2

}1/2, where s denotes the area
of a color. Here we adopt saliency sal(C sb

i ) to represent the
area of C sb

i , thus the scalar moment is computed as:

mom(C sb
i ) = sal(C sb

i )
{
C∗(C sb

i )2 + 64(L∗(C sb
i ) − 5)2

}1/2
, (3)

where C∗ and L∗ indicate the chroma and lightness in the
CIELCh space, respectively. Next, we compute the infor-
mation entropy based on the scalar moments for all color
patches in {C sb

i }.

5.2.2. Color coherence features
Given primary color patches {C sb

i } of a signboard and {C st
i } of

the scene, we also compute color features of color difference and
area balance, to model color coherence of a signboard with the
environment.

• Color difference. The color difference metrics are computed
for pairwise color patches. Here we need to compute dif-
ferences for two sets of color patches {C sb

i } and {C st
j }, for

which we use Hausdorff distance dH . Since Hausdorff dis-
tance is directional, we compute both dH ({C sb

i }, {C st
j }), and

dH ({C st
i }, {C sb

j }). We compute Hausdorff distances for all the
color differences described above.

• Area balance. The pixels of a signboard is a subset of the
pixels of the street. In this way, we can compute infor-
mation gain in both saliency and scalar moment described
above, by comparing the entropy before and after adding the
signboard in the street view.

In summary, we calculate a total of 14 features for modeling
color harmony of a signboard, and 10 features for modeling color
coherence of a signboard with the street.
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.3. Model construction

We employ LASSO regression to fit two linear models, one for
olor harmony of signboards, and another one for color coherence
f signboards and streets. LASSO regression attempts to model
he judgments as a weighted sum of features and an intercept
(t) = wTx(t) + β , where r(t) denotes the predicted rating, x(t)
denotes the feature vector, w denotes the feature weights, and β
is the intercept. The regressors are trained with L1 regularization
as follows:

min
w,β

{∑
i

(wTxi + β − ri)2 + λ∥w∥1

}
, (4)

where xi is the feature vector, and ri is the average judgment for
the ith signboard. LASSO performs feature selection by penalizing
potential models by the L1 norm of their feature weights. In
this way, LASSO will find a model that both predicts the target
scores well, and also tells which features are more important. We
use 10-fold cross-validation combined with stratified sampling,
to ensure that the split samples have similar distributions of
signboards from different streets.

Table 2 presents the statistics comparison of fixed and LASSO
regressors in modeling color harmony and color coherence of out-
door signboards. Here we take a fixed regressor that outputs the
mean judgments of all signboards as the baseline technique, and
a LASSO regressor without considering saliency as the ablation
technique. We compute the mean absolute error (MAE) and mean
squared error (MSE) of each regressor with cross-validation. From
this table, our approach of LASSO regressor with saliency signif-
icantly outperforms the baseline technique: our results achieve
19% decrease in MAE and 28% decrease in MSE in terms of color
harmony, and 20% decrease in MAE and 30% decrease in MSE in
terms of color coherence. Comparing to the ablation technique,
our approach achieves comparable results in modeling color har-
mony of a signboard, yet much better performances in modeling
color coherence of a signboard with the street, with 9% decrease
in MAE and 13% decrease in MSE.

We have also compared to the results by O’Donovan color
harmony model [15], using the pretrained weights learned from
online color themes (i.e., Kuler, COLOURLovers, and MTurk) and
that trained on our dataset. The results are as follows:

• Pretrained weights: O’Donovan color harmony model with
pretrained weights produce much worse results, i.e., the one
on Kuler has MAE 3.599, COLOURLovers has MAE 5.079,
and MTurk has MAE 3.929. The results indicate that the
pretrained models on online color themes are infeasible for
the signboard use case, and the new dataset is necessary for
accessing outdoor signboards.

• Weights trained on our dataset: O’Donovan color harmony
model trained on the signboard dataset has better results,
with MAE of 0.469 and MSE of 0.367. Nevertheless, the
model uses 334 dimensional color features derived from
four color space: RGB, CIELab, HSV, and CHSV, yet our
dataset contains valid harmony ratings for only 375 sign-
boards. It is easy for the model to overfit. Besides, O’Donovan
model adopts individual color features that may be affected
by different lighting conditions in street-view images. As
such, we stick to our model with the selected color features.

6. Model-based data analysis

All color features in the LASSO regressors are regularized to the
range [0, 1], so the learned weights are directly comparable and
give a sense of which features are most predictive. Appendix B
30
Table 2
Statistics comparison of fixed and LASSO regressors in modeling color harmony
and color coherence of outdoor signboards.

Color harmony Color coherence

MAE MSE MAE MSE

Fixed regressor (Baseline) 0.916 1.229 1.059 1.575
LASSO w/o saliency (Ablation) 0.735 0.874 0.938 1.263
LASSO w/ saliency (Our) 0.741 0.880 0.852 1.100

lists the learned feature weights, while the details of the weights
for each run are given in Supplementary Table S3. Note that some
weights are empty fields, because the feature exhibits strong
correlations with some other feature and we select only one
feature between them. It is also important to remember that
examining individual weights gives only a partial picture of the
predictor’s behavior.

6.1. Important features for color harmony

For color harmony, color difference features are the most
predictive. Among the separate component differences, the most
important feature is average lightness difference, indicating a
preference for colors with variable lightness and distances be-
tween them are sufficient. Next, average chroma difference is
also very important with a big negative weight, indicating that
colors with similar chroma tend to be harmonic. However, the
weights of hue difference are marginal, showing that any hues
used together can be harmonic. These findings are consistent with
conventional color usage guidelines [49,50] that acknowledge the
importance of setting lightness and chroma properly. When com-
bining all separate components together, the minimum holistic
difference interval shows a large negative weight, whilst average
interval is not very important. This suggests that signboards with
at least two similar colors tend to be harmonic.

Area balance features, on the other hand, are less important
for color harmony. In fact, the ablation LASSO regressor (see
Table 2) without considering saliency and subsequent area bal-
ance features shows even better performance. This suggests that
area balance shall not be of primary concern for harmonic sign-
board design.

Fig. 3 compares minimal holistic difference interval (a) and
scalar moment entropy (d) of signboards in Milan and HK 1.
Among the streets, signboards in Milan receive the highest av-
erage color harmony ratings (rhar = 5.78), whilst those in HK
1 receive much lower ratings (rhar = 4.379). Fig. 3(a) shows a
trong correlation of minimal holistic difference interval and color
armony, whilst the correlation of scalar moment entropy and
olor harmony is not obvious in Fig. 3(d). In Fig. 3(a), the minimal
olistic difference intervals of Milan signboards is constrained in
small range, whilst those of HK 1 signboards are spread out.
he signboards with large minimal holistic difference intervals
re typically rated of low harmony. Taking HK 1 signboards in
ig. 3(c) for example, the top signboard uses blue–white, and
he bottom signboard uses black–magenta color combinations.
oth color combinations exhibit big holistic difference intervals,
nd also separate color differences in chroma. In contrast, Milan
ignboards in Fig. 3(b) have small holistic difference intervals,
enefiting from small chroma differences.

.2. Important features for color coherence

Color differences also play a major role in color coherence
etween a signboard and the environment. Specifically, Hausdorff
istance of the holistic difference interval from signboard colors



Y. Lin, W. Zeng, Y. Ye et al. Computers & Graphics 105 (2022) 25–35

p

a
h
t
t
c
o
m
L
c

w
l
o
b
M
t
g
c
s
m
a
p

Fig. 3. Comparing minimal holistic difference interval (a) and scalar moment entropy (d) of signboards in Milan and HK1. Example signboards in Milan and HK1 are
resented in (b) & (c) respectively, together with user ratings rhar and predicted ratings rhar (t).
Fig. 4. Comparing color coherence over geography. Distributions of signboard-street holistic color intervals (a) and scalar moment gains (b) in the streets. An example
signboard from NYC (c) is coherent with the street, whilst another one from Taipei (d) is incoherent.
to street colors has a large negative weight, indicating a prefer-
ence of small color difference between signboards and streets.
Yet, sufficient lightness difference is preferred, as the lightness
difference shows a large positive weight. Other color differences
exhibit similar weights as those in the LASSO regressor for color
harmony, suggesting consistent color usage guidelines for both
color harmony and color coherence. One interesting observation
is that Hausdorff differences from signboard colors to street colors
are much bigger than those from street colors to signboard colors.
The finding coincides with a common practice that signboards
typically catch people’s attention before the environment.

The gain in scalar moment has a higher positive weight for
color coherence, indicating that a signboard making street col-
ors more balanced is more likely to be perceived as coherent
with the street. Taking a signboard from NYC (Fig. 4(c)) and
nother one from Taipei (Fig. 4(d)) for example, both signboards
ave small color differences with the street (Fig. 4(a)), whilst
he NYC signboard has a much higher gain in scalar moment
han the Taipei signboard. The difference contributes to a higher
oherence ratings for the NYC signboard (rcoh = 6.286) than that
f the Taipei signboard (rcoh = 3.857). The correlation of scalar
oment gain and color coherence makes our saliency-aware
ASSO model outperforms the ablation LASSO model without
onsidering saliency.
From Appendix A, Milan signboards are the most coherent

ith the street, whilst those in HK 1, Taipei, Seoul 2, and HK 2 have
ower color coherence ratings. Fig. 4(a) presents the distributions
f Hausdorff distances of the holistic color difference from sign-
oard to street colors. The holistic color difference distributions in
ilan and Osaka are concentrated to small values, in comparison

o the other streets. In Fig. 4(b), distributions of scalar moment
ains are shown. Here, signboards in more coherent streets typi-
ally have more scalar moment gains than those in less coherent
treets. Interestingly, compared to Osaka and NYC, Seoul 1 has
ore concentrated scalar moment gains, which may explain why
smaller standard deviation is achieved in Seoul 1 signboard
redictions.
31
7. Discussion

Experimental results show that overall, color difference fea-
tures play more important roles than area balance features in
both color harmony and color coherence. This may explain why
recent studies (e.g. [29,30]) on color harmony mostly focus on
assessing color differences instead of area balance. Moreover, the
results also reveal that our saliency-aware color harmony model
achieves better performance when modeling color coherence, but
only produces similar predictions when modeling color harmony,
than ablation techniques without considering saliency. A possible
reason is that signboards studied in this work typically occupy a
relative small region in the image space, and the enclosed pixels
exhibit small saliency variations. Thus saliency makes a marginal
change to the color difference features for color harmony. The sit-
uation changes when modeling color coherence, which considers
saliency over an entire street view. The difference indicates that
saliency indeed affects human perception, and shall be considered
when assessing color harmony, especially for images of complex
environments.

Our results clearly show variations of color harmony and
color coherence ratings over geography. Signboards in Asian cities
typically receive low ratings, especially those in HK1, HK2, and
Taipei. Interestingly, these three cities have highest average num-
ber (∼4) of signboards in each image. We suspect that store
owners in these streets consider too much of the noticeability
of signboards, hence choose to use more saturated colors; see
examples in Fig. 3(c) and Supplementary Material Table S1 &
S2. The saturated colors, as from our analyses, harm both color
harmony and color coherence. An exception city is Osaka in Japan.
We see most of the signboards in Osaka use just one or two
colors, and are designed in similar styles with the context. Similar
designs are observed in Milan and NYC. Consequently, signboards
in these three cities receive high ratings for both color harmony
and color coherence. A deep investigation shows that signboard
colors in these cities are limited to close colors of the local
context.
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.1. Design recommendations

Next we discuss our results disaggregated by the main char-
cteristics that define the research goals of this work.

.1.1. Towards harmonic signboard design
Holtzschue [50] stated that harmonic colors can use any com-

inations of hues, as long as lightness and chroma are set ac-
ordingly. Ou and Luo [47] also claimed that colors with small
hroma differences tend to be harmonic, whilst many literatures
e.g., [15,47]) agreed on the strong effect of lightness difference.
ecently, Won et al. [5] revealed that hue difference has minor
ffect-as the same with Holtzschue’s statement, and lightness
ifference has significant impacts, on color harmony of signboard.
et, the authors did not find much effect of chroma differences
n color harmony of signboard. This is probably because the
uthors transformed colors to a limited number of color names,
ereby the experiments were constrained to a few color combi-
ations. Instead, our results coincide with existing statements,
n a stronger sense with quantitative values. Specifically, the
eights of average lightness and chroma differences rank the
op two in 14 color harmony features we analyzed, whilst the
eights of hue difference is minimal. One thing needs notice is
hat the lightness and chroma differences here are average values,
ather than the minimal differences. In most cases, average color
ifferences reflects difference between background and text/logo
olors.
We distill the following recommendation:

1: For harmonic signboard design, background and text/logo color
ombinations with distinctive lightness difference and small chroma
ifference are better.

.1.2. Towards environment-coherent signboard design
To certain extent, making a signboard coherent with the street

eans to suppress the noticeability of the signboard, which is
ontradictory to the purpose of attracting customers. However,
s important elements of a street landscape, outdoor signboards
hould be coherent with the environment, from the perspectives
f urban planning and city management. Yet, few to no studies
xplicitly assess what factors make an outdoor signboard look
oherent with the street. This work fills the gap and we reveal in-
eresting findings. First, the results show that the weights of color
oherence features are relatively similar to those of color har-
ony features, meaning that conventional color usage guidelines

or color harmony can also be applied to improve color coherence.
pecifically, small holistic difference intervals and chroma differ-
nce, and large lightness difference, are preferred. Hence using
n LED lamp to brighten signboards is effective. Second, adding
signboard that makes the street colors look more balanced has
slight impact on color coherence, in comparison to the color
ifference features. Measuring the change of saliency or scalar
oment entropy is rather challenging, calling for new techniques
uch as virtual reality.
Therefore we distill the following recommendation.

2: For environment-coherent signboard design, colors that are sim-
lar to the street colors, and more lightness, are better. New tech-
iques that allow comparison of streets before and after adding
ignboards are encouraged.

.2. Applicability

In collaboration with an urban planner, this work was initiated
o improve color design for outdoor signboards. We develop color
armony models that quantify harmony and coherence ratings of
ertain color combinations in a geometric manner, meeting the
32
Fig. 5. Improvements of poorly designed signboards (yellow) can be
accomplished by mimicking well-designed ones (red) in the neighborhood.

Fig. 6. Failure examples with high prediction errors. (a) The signboard is
obscured by trees, resulting in a reduction in the average lightness of the
extracted color patch and consequently a low harmony prediction. (b) The
signboard marked in green shares similar colors with the street, resulting in
a high coherence prediction, yet it receives a low coherence rating from human.

research goals identified in Section 3. With the models, one can
find out which signboards are poorly designed, identify reasons,
and come up with feasible solutions for improvement. Here, we
consider a version of this process in which we first identify
poorly- and well-designed signboards in the same street, and
next we can improve poorly-designed signboards by mimicking
well-designed ones.

Fig. 5 presents three such examples, where poorly-designed
signboards are marked in yellow and well-designed ones are
marked in red. The poorly- and well-designed signboards are
located besides each other, sharing a common context with the
same street and lighting conditions. Based on our models, those
poorly-designed signboards make common mistakes such as us-
ing saturated colors, or color combinations with big chroma dif-
ferences. To improve the harmony and coherence ratings, one
can consider adopting color combinations of well-designed sign-
boards in the neighborhood, which are adapted to the local con-
text with less saturated colors.

Nevertheless, it is not feasible to ask the local business own-
ers to change the signboards immediately. Instead, the findings
achieved in this study would be an important supplement for
establishing street design codes, which is an interesting direc-
tion to promote precise urban governing, especially in East Asia
[3,4]. The municipal city appearance and environmental sanita-
tion administrative department could ask local business owners
to renew their signboards every 5∼10 years by following the
code. Moreover, newly-opened shops have to follow the code as
well. In this way, the color coherence of a street would be largely
improved in a decade.

7.3. Limitations and future work

There are several limitations of the current work.

• First, we assume that the number of primary color patches is
fixed and we adopt a straightforward color patch extraction
method, which may degrade the quality of color extraction.
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Fig. 6(a) presents a failure case of our model caused by
inaccurate color patch extraction. The trees on the road
obscure the signboard and introduce green and dark brown
colors, leading to a reduction in the average lightness of the
extracted color patches and consequently a low harmony
prediction. A possible future work thus involves dynamically
adjusting the number of colors, or employing deep-learning
techniques (e.g., [51,52]) to derive colors. In such ways, we
can improve the accuracy of color metrics and consequently
the quality of models.

• The current work considers only two-aspect color features
of color difference and area balance. Though saliency im-
plicitly reflects many factors, we would like to explicitly
examine additional features such as color distinctness, con-
trast, and adjacency, which may also have significant effects
on color harmony and coherence. For example, in Fig. 6(b),
the signboard marked in green shares similar colors to the
street, resulting in a high coherence prediction. However,
the colors are not distinctive from the environment, thus the
signboard receives a low coherence rating from humans.

• Currently, the color harmony models are built upon CIELab
color space, which was designed to be perceptually uniform
but do not accurately quantify small- to medium-size color
difference. A possible alternative is to use CIEDE2000 [53]
that copes well with human judgments in both local patches
and global space. Besides, it is worthy of combining color
features of many different color spaces together, such as that
in [15]. Nevertheless, this will require us to collect more
color harmony judgments, to prevent overfitting the model.

• Our current method is to obtain professional consensus
through the professional judgment of small samples, so we
do not need too large samples and can avoid the deviation
caused by cultural background to a certain extent. Never-
theless, this yields a small dataset on color preference for
outdoor signboards. We are going to build a targeted web-
site to collect a large sample of the preferences of locales in
typical cities around the world for further exploration.

• With a larger dataset, we envision to employ advanced
deep learning techniques to model the color harmony. In
this way, we can get rid of the tedious process of select-
ing proper color spaces and features. Nevertheless, deep
learning models lack interpretability and may not be much
helpful for establishing color design codes. Instead, we may
first take advantage of deep learning models to narrow
down the search space, and construct more interpretable
models using conventional LASSO regression.

• Last but not least, we will extend the applicability of this
work. On one hand, we are working on an augment reality
(AR) project that aims to help users improve color designs of
outdoor signboards. This is nevertheless a challenging task,
due to the complexity of street environment and lighting
conditions. On the other hand, we would like to examine
if the harmony models can be applied to other fields, such
as to improve color coherence for multiple-view visualiza-
tion design [54]. This can give more color palettes than
prefabricated ones like ColorBrewer [55].

8. Conclusion

We have presented an in-depth assessment on what color fea-
tures contribute to color harmony and color coherence of outdoor
signboards. The findings are revealed with novel color harmony
models that take into account the color features in CIELab color
space, and saliency as an inherent color characteristic in the
image space. The benefits of introducing saliency are prominent,

especially for modeling color coherence of a signboard with the
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Table A.3
User ratings and predicted ratings of color harmony for the streets.
Street name User ratings Predicted ratings MAE MSE

NYC 5.568 ± 0.527 4.890 ± 0.384 0.726 0.680
Seoul1 5.035 ± 0.843 4.734 ± 0.398 0.729 0.724
Seoul2 4.300 ± 1.043 4.442 ± 0.739 0.721 0.886
Milan 5.780 ± 0.534 5.238 ± 0.399 0.649 0.597
Japan 5.456 ± 0.863 4.875 ± 0.631 1.013 1.503
Taipei 4.057 ± 1.106 4.501 ± 0.584 0.893 1.309
HK2 4.115 ± 1.070 4.684 ± 0.516 0.781 1.052
HK1 4.379 ± 0.941 4.545 ± 0.610 0.580 0.549

Table A.4
User ratings and predicted ratings of color coherence for the streets.
Street name User ratings Predicted ratings MAE MSE

NYC 5.527 ± 0.734 4.968 ± 0.465 0.819 0.977
Seoul1 5.255 ± 0.909 5.061 ± 0.368 0.705 0.762
Seoul2 4.266 ± 1.298 4.658 ± 0.727 0.933 1.262
Milan 6.020 ± 0.538 5.114 ± 0.331 0.984 1.304
Japan 5.670 ± 0.928 5.058 ± 0.514 1.017 1.338
Taipei 4.117 ± 1.192 4.747 ± 0.610 0.928 1.404
HK2 4.073 ± 1.084 4.487 ± 0.773 0.818 1.093
HK1 4.309 ± 1.184 4.347 ± 0.773 0.809 0.980

environment. This is because saliency depends on many factors
such as color distinctness [35] and therefore reflects which areas
draw a viewer’s attention, which is essential for complex envi-
ronment. We apply our saliency-aware color harmony models
to a new dataset comprising of diverse signboards from various
streets worldwide, and diverse subjective ratings by eight archi-
tects. Experimental results show that many conventional color
usage guidelines (e.g., to choose proper lightness and chroma dif-
ferences) apply to signboard design, and also reveal new insights
such as that adapting simple color patches in accordance with the
local context can improve signboard design.
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Appendix A. User ratings and predicted ratings of color har-
mony and color coherence for the streets

See Tables A.3 and A.4.

Appendix B. Feature weights of our LASSO regressor (top) con-
sidering saliency and ablation LASSO regressor (bottom) with-
out saliency.

See Tables B.5 and B.6.



Y. Lin, W. Zeng, Y. Ye et al. Computers & Graphics 105 (2022) 25–35

o

R

Table B.5
Feature weights of Our LASSO regressor considering saliency.

Color harmony Color coherence

Feature Channel Metric Weights Feature Metric Weights

Color
difference

Separate
Components
Difference

Lightness Max.
Min.
Average

–
0.083
2.128

Hausdorff
distance

Street-sign.
Sign.-street

1.238
3.865

Chroma Max.
Min.
Average

–
−0.131
−1.441

Street-sign.
Sign.-street

0.395
−1.684

Hue Max.
Min.
Average

–
−0.139
−0.231

Street-sign.
Sign.-street

−0.336
−0.775

Holistic
Difference
Interval

Color Max.
Min.
Average

–
−0.925
−0.239

Street-sign.
Sign.-street

−1.461
−4.313

Area
balance

Saliency Saliency Entropy −0.462 Saliency
gain

Entropy
difference

−0.453

Scalar
Moment

Saliency,
Chroma,
Lightness

Entropy −0.483 Scalar
moment
gain

Entropy
difference

1.167
Table B.6
Feature weights of ablation LASSO regressor without saliency.

Color harmony Color coherence

Feature Channel Metric Weights Feature Metric Weights

Color
difference

Separate
Components
Difference

Lightness Max.
Min.
Average

–
−0.314
1.986

Hausdorff
Distance

Street-sign.
Sign.-street

−0.711
0.397

Chroma Max.
Min.
Average

–
−0.359
−0.876

Street-sign.
Sign.-street

0.919
−1.343

Hue Max.
Min.
Average

–
−0.624
−0.397

Street-sign.
Sign.-street

−0.755
−2.359

Holistic
Difference
Interval

Color Max.
Min.
Average

–
−1.260
−0.293

Street-sign.
Sign.-street

0.707
−1.902
Appendix C. Images of signboards and street views, user rat-
ings, and code of our LASSO regressor model.

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.cag.2022.04.012.
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