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DMiner: Dashboard Design Mining and
Recommendation

Yanna Lin, Haotian Li, Aoyu Wu, Yong Wang, and Huamin Qu

Abstract—Dashboards, which comprise multiple views on a single display, help analyze and communicate multiple perspectives of
data simultaneously. However, creating effective and elegant dashboards is challenging since it requires careful and logical
arrangement and coordination of multiple visualizations. To solve the problem, we propose a data-driven approach for mining design
rules from dashboards and automating dashboard organization. Specifically, we focus on two prominent aspects of the organization:
arrangement, which describes the position, size, and layout of each view in the display space; and coordination, which indicates the
interaction between pairwise views. We build a new dataset containing 854 dashboards crawled online, and develop feature
engineering methods for describing the single views and view-wise relationships in terms of data, encoding, layout, and interactions.
Further, we identify design rules among those features and develop a recommender for dashboard design. We demonstrate the
usefulness of DMiner through an expert study and a user study. The expert study shows that our extracted design rules are reasonable
and conform to the design practice of experts. Moreover, a comparative user study shows that our recommender could help automate
dashboard organization and reach human-level performance. In summary, our work offers a promising starting point for design mining
visualizations to build recommenders.

Index Terms—Design Mining, Visualization Recommendation, Multiple-view Visualization, Dashboards

✦

1 INTRODUCTION

MULTIPLE-VIEW (MV) visualizations composite mul-
tiple visualizations into a single cohesive represen-

tation. Due to its power to support users in exploring
several perspectives of data simultaneously, a large number
of MV visualizations have been created and shared on the
web by various domains, from biomolecular to multimedia
to business. Creating an MV visualization typically starts
with selecting views of interest, followed by presenting
the selected views and adding interactions between views
[1]. This paper refers to the presentation and interactions
as layout arrangements and coordination, respectively. Ar-
ranging and coordinating views are vital when explaining
the widest range of usability problems in visualizations [2].
Specifically, a proper arrangement can maximize the utility
of the limited display space and improve the effectiveness
and expressiveness of the information exchange, improving
the usability of the system [3]. Besides, coordination among
visualizations can make cross-view data relationships more
apparent and reduce users’ cognitive burden [4].

However, it remains challenging to create effective MV
visualizations with a proper view arrangement and coordi-
nation. From a theoretical perspective, existing guidelines
on MV visualization designs focus on high-level recom-
mendations, e.g., drawing users’ attention to the right view
and making cross-view data relationships more obvious [1].
They are insufficient in providing lay users with actionable
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suggestions to adjust their designs. From a practical per-
spective, while researchers have recently developed some
recommenders or authoring tools to assist lay users in creat-
ing visualizations and MV visualizations, few of them have
focused on the arrangement and coordination among views.
Existing tools (e.g., Tableau [5], Power BI [6], and Mul-
tiVision [7]) provide default layout templates that require
manual adjustment to achieve satisfactory MV visualization
designs. This process is tedious and time-consuming, given
that the potential layouts increase exponentially with the
increasing number of views.

We present DMiner, a data-driven framework for mining
dashboard design and automating the layout arrangement
and view coordination for MV dashboards (Figure 1), thus
reducing the design burden of designers. Specifically, MV
dashboards are one of the most common genres of MV visu-
alizations [8]. In this paper, we use the term MV dashboards
and dashboards interchangeably to represent multiple-view
dashboards. Given that end-to-end ML-based visualization
recommenders suffer from poor explainability and can con-
fuse end-users [9], we aim to develop an explainable ap-
proach by first mining design rules from an MV dashboard
dataset and further recommend appropriate layout arrange-
ment and view coordination in MV dashboards.

Due to the lack of MV dashboard datasets, we first
crawled a large number of dashboards created by Tableau,
a common dashboard authoring tool, from GitHub [10].
We deduce a set of features that influence the arrange-
ment and coordination of these views through reviewing
prior studies, and further identify the mappings among
them (Figure 1 (A)). With the collected dataset, we then
extract features from two perspectives: 1) the single-view
features describing each view in terms of its visual en-
codings (e.g., color), encoded data (e.g., data types), and
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Figure 1. The workflow of DMiner. This paper proposes DMiner as a framework for dashboard design mining and automatic recommendation. With
the dashboard dataset as the input, DMiner: (A) first surveys a set of features important for dashboard design, and then extracts those features
to delineate dashboard designs comprehensively. These are categorized into two types, i.e., single-view features such as data and encoding and
pairwise-view features such as coordination and relative position; (B) then mines design rules using decision rule approach, and further filters them;
and (C) finally leverages these rules for recommending dashboard arrangement and coordination.

its layout (e.g., position); and 2) the pairwise-view features
describing pairwise relationships between views, including
the data relationship (e.g., overlapping data columns), en-
coding relationships (e.g., same encoding), spatial relation-
ships (e.g., relative angle), and coordination (e.g., filter).

Building upon those features, we mine the mappings
using the decision rule and filter them to distill the design
rules of dashboards (Figure 1 (B)). Specifically, based on
the data and encodings of every single view and the data
relationship and encoding relationship between views, the
rules infer the layout of each view and the spatial and
coordination relationship between view pairs. For instance,
one design rule in Figure 1 (B) shows that a text visual-
ization (“A.Mark = Text”) without data encoding on the
Y-axis (“A.#Y < 1”) tends to place at the top (“A.Y = 1”).
Using the extracted rules, we develop a recommender that
recommends the optimal arrangement and coordination by
ranking the obedience of design rules (Figure 1 (C)).

We demonstrate the usefulness and effectiveness of
DMiner through an expert study and a comparative user
study using the collected Tableau dashboard dataset. We
invite four experts to rate the appropriateness of the 10%
of extracted rules, and showcase those rules with higher
expert scores. Also, we compare our recommender with the
existing tool, the crawled dashboard, and experienced de-
signers. We believe that our work can be a starting point for
automating the layout arrangement and view coordination
in MV dashboards. Our main contributions are as follows:

• DMiner, a novel data-driven framework for dashboard
design mining and recommendation.

• An expert study to demonstrate the appropriateness of
extracted rules and a comparative study to show the
effectiveness of the recommender.

• A dataset of 854 real-world dashboards with detailed
information such as metadata, encodings, and coor-
dination, which can benefit future research on dash-
boards.

2 RELATED WORK

Our research is related to prior studies on multiple-view
visualizations, visualization recommendations, and design
knowledge mining.

2.1 Multiple-view Visualization
Multiple-view visualizations (MVs) have gained extensive
research interest in the visualization community. A large
body of research aims to advance the theoretical un-
derpinnings of MVs through empirical methods. Baldon-
ado et al. [1] drew from a workshop to present eight guide-
lines for using MVs in information visualization along three
dimensions: the selection, presentation, and interaction of
views. Roberts et al. [11] contributed a state-of-the-art report
highlighting seven fundamental research areas of MVs: data
processing, view generation, exploration techniques, coor-
dination, tool infrastructure, human interface, usability and
perception. Sarikaya et al. [8] summarized the design space
of dashboards by analyzing the intentions of a chosen cor-
pus of 83 dashboards. Followed by this work, Bach et al. [12]
gathered 36 more dashboards and proposed a more fine-
grained design space focusing on the dashboard structure,
visual design, and interactivity.

Researchers have also contributed several experiments
to understand the design of MVs. For instance, Qu and
Hullman [13] studied how visualization authors consider
the importance of encoding consistency between views
when designing MVs. Langner et al. [14] investigated how
users interacted with MVs on large screens and concluded
with design suggestions. While those studies contributed
valuable design knowledge, they rely on large-scale exper-
iments and require considerable human effort. We take a
different perspective by automatically extracting MV design
knowledge from a larger scale corpus.

One of the key challenges in designing MVs is to relate
data relationships among views [15]. Coordination tech-
niques such as brushing and linking can reveal cross-view
data relationships and have been widely used in visual-
ization tools (e.g., Tableau [5], Power BI [6], Jigsaw [16]).
Despite being useful, they require users to trigger interac-
tion events (e.g., brushing) and pay adequate attention to
subsequent changes on other views. Thus, researchers have
advocated the use of proximity-based methods that spatially
organize relationship components [17]. Inspired by those
studies, we aim to automatically recommend coordination
and spatial arrangement of views to facilitate the design
of MVs. We focus on MV dashboards, which are one of
the most popular genres of multiple-view visualizations [8].
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Through a review of existing work, we develop a set of
features that influence the arrangement and coordination
of MV dashboards, extract design rules from a corpus of
Tableau dashboards and further recommend appropriate
arrangement and coordination of multiple views.

2.2 Visualization Recommendation
Authoring effective and elegant visualizations is a challeng-
ing task even for professionals, since it requires the consid-
eration of many aspects such as data insights, perceptual
effectiveness, and aesthetics. Researchers have proposed
many visualization recommendation systems to assist in
data analysis. Several recommenders (e.g., Data2Vis [18],
VizML [19], Draco [20], and KG4Vis [21]) focus on recom-
mending visual encodings of a single visualization.

However, a single visualization is often insufficient in
supporting in-depth data analysis, as it often requires pro-
gressive and iterative exploration of different data sub-
sets [22]. Thus, researchers have started to investigate the
problem of recommending multiple visualizations. For in-
stance, VizDeck [23] utilizes users’ preferences to select
data for presentation and organize dashboards. Voder [24]
supports the interactive exploration of data facts associated
with charts and natural language descriptions. To further
reduce manual effort, Tundo et al. [25] allowed users to
select dashboard templates to transform the declarative
definition they create into dashboards. MultiVision [7] and
Dashbot [26] recommend analytical dashboards given an
input dataset in an end-to-end manner. However, those
systems are either template-based and do not consider the
underlying data, or do not recommend layout arrangement
and view coordination, which requires considerable human
effort. Our work fills this gap by developing a recommender
for arranging views in an MV dashboard.

Research in the field of data storytelling has studied ap-
proaches for composing multiple visualizations in a logical
manner. For instance, researchers have proposed methods
to arrange visualizations in a logical sequence to enhance
storytelling [27], [28]. DataShot [29] and Calliope [30] group
multiple visualizations into a coherent topic according to
insights derived from the visualizations. Different to them,
we study the layout arrangement and view coordination in
MV dashboards for data analysis and comprehension.

2.3 Design Mining Visualizations
There are an increasing number of multiple-view visualiza-
tions created and shared by people from different domains,
which has inspired many researchers to mine and extract
multiple-view visualization design knowledge from them.
Some researchers have invested effort into adopting the sta-
tistical method to mine the visualization usage. Al-maneea
and Roberts [31] collected MVs from the published papers,
and answered what the most common number of views
is and what the popular tiles are by statistically counting
their manual-label chart type and layouts. Beyond counting,
Chen et al. [32] further leveraged some statistical meth-
ods like condition probability to perform the configuration
and composition analysis, and integrated the findings into
a system for exploration and recommendation. Following
this work, Shao et al. [33] employed Bayesian probabilistic

inference to analyze the effects of design factors on layouts
of MVs, and discovered some insightful layout design pat-
terns, e.g., views for exploration with a more scattered area
ratio. Though inspiring, these analyses and findings were
limited to arrangements and view types, since the MVs
collected in image format prevented them from accessing
the underlying data and the coordination among views.
Recently, Lu et al. [34] detected the position and underlying
semantics (such as the numbers 1-9) of components in
infographics and explored how different components are
linked. Inspired by this work, we aim to mine the mappings
from the characteristic of individual views and view pairs
to the arrangement and coordination in an MV dashboard.

3 DASHBOARD DATASET

Our study aims to mine design rules from existing dash-
boards and further automatically recommend optimal MV
dashboards. However, there is a lack of off-the-shelf dash-
board datasets that can enable automated MV dashboard
design. Specifically, existing datasets of MV dashboards [31],
[32], [33] contain only the information of individual views,
such as position, size, and chart type. They do not provide
the metadata (e.g., the data operations) and the interac-
tions between views, which are necessary information for
developing visualization and dashboard recommenders [7],
[19]. To address this problem, we build a new dataset from
the Internet. The detailed procedures for constructing the
dashboard datasets will be introduced as follows:

Data Crawling. We first crawl Tableau dashboards from
GitHub, i.e., searching and downloading Tableau work-
books with .twbx extensions. There are multiple advan-
tages to using Tableau dashboards. First, Tableau work-
books contain all the necessary information to render the
corresponding dashboards (e.g., the underlying metadata,
visual encodings, and coordination among views). Second,
the information is stored in a structured XML format, which
can be processed automatically at scale and can avoid the
heavy manual labelling procedures required in previous
studies [31], [32], [33]. Finally, Tableau is one of the most
popular tools for creating dashboards, and its workbooks
are widely shared on GitHub. Thus, the collected dataset
is diverse regarding its creators, design themes and styles,
offering opportunities to mine common design rules.

Automatic Data Processing and Cleaning. The datasets
crawled from GitHub suffer from noise, affecting our analy-
sis results. To improve the dataset quality, we first perform
data cleaning by parsing and filtering the raw workbooks
(.twbx). As shown in Figure 2, we parse the workbooks
to derive information including the metadata (e.g., data
types and data operations), encodings for each view, the
coordination among views, and the arrangement of each
view in a dashboard. Subsequently, we remove workbooks
without dashboards (e.g., the workbooks containing only in-
dividual views). Dashboards using multiple data sources are
also abandoned since the lack of relational schema between
data sources hinders data processing. Finally, we discard
dashboards without any view coordination (e.g., cross-view
interactions), since we aim to mine and recommend view co-
ordination. According to Tableau, there are two coordination
types, namely filtering and brushing. Specifically, filtering
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Figure 2. Overview of the data collection pipeline: (A) We crawled a diverse set of Tableau dashboards from GitHub; (B) We automatically parsed
the raw workbooks and (C) extracted information about the view arrangement and coordination.

Figure 3. The basic statistics of our dashboard collection. (A) and (B)
show the distribution of the number of views in each dashboard and the
distribution of the mark type of each view, respectively. (C) describes the
distribution of coordination types for all 854 dashboards.

removes irrelevant data objects while brushing highlights the
related visual elements and keeps the context [35].

Manual Data Processing and Cleaning. Tableau work-
books offer a feature that automatically decides the mark
type. Therefore, about half of the visualizations have an
“automatic” mark type. To address this problem, we manu-
ally label the mark types according to both the definition
of marks in Tableau and Vega-Lite [36], a widely-used
grammar of visualizations. A detailed list of the mark types
and corresponding examples is available in the supplemen-
tary material. To ensure the quality of labels, each view is
labeled by two co-authors. The co-authors first finish the
labelling individually, resulting in 99% agreement. Conflicts
are then discussed until reaching a consensus. We remove
dashboards containing views with multiple mark types,
e.g., the network that includes the circle and line.

Results. We finally collected 854 dashboards with 2990
views in total for further exploration, and more details
can be found in the supplementary material. Specifically,
Figure 3 shows the basic information of the dashboards,
where (A), (B), and (C) represent the distribution of the
number of views of each dashboard, the mark type of each
view, and the coordination among view pairs, respectively.
Figure 3 (A) and (B) show that the distribution of the num-
ber of views aligns well with the observations from previous
studies [31], [32]. For exmaple, 2- and 3-view dashboards
are the most common, and bar is the most popular mark
type. Figure 3 (C) shows that half of the view pairs possess
coordination, which is almost filtering.

4 DMINER

DMiner aims to automatically extract design rules for MV
dashboards from existing dashboard datasets and guide the
subsequent design of MV dashboards, which is common
in visualization recommenders (e.g., Draco [20]). Figure 1
provides an overview of DMiner. We first survey previous
relevant studies to identify a set of key features that indicate
important considerations for MV dashboard design. We
then extract those features from our dataset and mine design
rules. Finally, we develop a recommender for MV dashboard
design based on the extracted rules. The detailed procedures
of feature engineering, rule mining, and recommender will
be introduced in the following subsections.

4.1 Feature Engineering
Figure 4 provides an overview of the extracted features and
their mappings. Unlike existing works that propose single-
view features (e.g., the absolute position of views), we fur-
ther introduce pair-wise features (e.g., the relative position
of views), which allows us to delineate the arrangement and
coordination between views in a more fine-grained manner.

Our design choices for feature selection and the map-
pings among them are built upon prior theoretical research
about dashboards and multiple visualizations [32], [37], [38],
[39], [40]. Specifically, they have suggested that the data and
encoding features of views are crucial for arranging and
coordinating the view into a cohesive dashboard. Therefore,
we choose those mappings, which are denoted as black
arrows in Figure 4. The bottom part of Figure 1(B) shows an
example mapping from data and encoding features of a view to
its arrangement features, which describes that a text view (i.e.,
A.Mark = Text) without data encoding on Y-axis (i.e., A.#Y
< 1) tends to be placed at the top (i.e., A.y = 0). Also, prior
studies have shown that the arrangement and coordination
of a dashboard are interrelated [31], [33]. Therefore, we
have further added such mappings in DMiner, as indi-
cated by the red arrows in Figure 4. For example, the
upper part of Figure 1(B) shows that two views, with one
brushed by the other (coordination features), should be put
closely (arrangement relationship features). In summary, we
have defined ten mappings among the features describing
dashboard designs. Figure 5 shows the formal definitions
of all the extracted features. They can be divided into
two major groups, i.e., single-view features and pairwise-
view features. Single-view features include features about
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Figure 4. The targeted mappings in our design rule mining. We iden-
tified ten mappings in black and red between features in designing
dashboards, while the gray dotted lines show the derivation relation-
ship. These black mappings focus on how to utilize data and encoding
information of single views for arranging these views in a dashboard
and adding coordination among them. The red mappings between
arrangement features and coordination features are used to further
comprehensively describe the dashboard design.

the data, encoding, and arrangement of each view in a
dashboard. Pairwise-view features are extracted to represent
the relationship between two views. Specifically, we extract
the data relationship, encoding relationship, arrangement
relationship, and coordination relationship between two
views. In summary, there are 33 single-view features and 41
pairwise-view features. A detailed feature list is available in
the supplementary material.

4.1.1 Single-view Features
Single-view features are extracted to describe each individ-
ual view in the dashboard. These features can be roughly
categorized into two types.

Data and encoding features can reflect what data is used
in the view and how the data is visually encoded, which
has been considered essential for view arrangements in a
previous study [32]. Inspired by previous studies that utilize
features to characterize single-view visualizations [19], [21],
we first extract data features regarding data types (i.e., nu-
merical, nominal, and ordinal) and data operations (e.g.,
count and sum). Since the numbers of data fields in different
views are inconsistent, it is infeasible to use each field’s
data type and operation as features. Instead, as shown in
Figure 5, we define an operator, i.e., CountFunc, to compute
the frequency of different data types and data operations as
features of views. For example, the bar chart in Figure 3 (A)
uses one ordinal field on X-axis and one numerical field on
Y-axis. Regarding encoding information, we extract features
about the mark type of the view and the usage of different
encoding channels (i.e., position, size, color, shape). Similar
to data features, we also summarize the usage of each
channel, for example, how many data fields are encoded
using the position channel on X-axis.

Layout arrangement features describe how the view is
placed in the dashboard. We propose a series of arrange-
ment features to delineate the position and size information
of each view. The display area of a dashboard is evenly
divided into n × n grids (n > 0), and we assume that each
view takes a rectangle area and does not overlap with each
other. In this paper, n is set to 4 to strike a balance between
performance and efficiency in our subsequent evaluations.

However, our mining algorithm can also work well when n
is other values. As a result, besides the features delineating
a view’s arrangement with its original position and size,
the arrangement features using the grids are also extracted.
Given that each dashboard has a different size, the size of
all dashboards is normalized to 4*4 to enable comparisons.
That is, the width and height of each dashboard is 4, and the
width and height of each view is one of the values [1, 2, 3, 4].

4.1.2 Pairwise-view Features
Previously we introduced how we extract the single-view
features to characterize each individual view in the dash-
board. To further reveal the relationships across different
views in the dashboard, we introduce a group of pairwise-
view features. In our study, we propose three types of
pairwise-view features:

Data and encoding relationship features are computed
via aggregation functions on two views. Similarly, due to
the inconsistent number of fields among views, it is in-
feasible to calculate the statistical values of two views like
correlation [19]. We propose two main types of aggregation
operators shown in Figure 5. The first type is binary op-
erators to compare the number of data fields, e.g., IsEqual
determines whether two views encode the same number
of fields for a given encoding channel. The second type
is set operators concerning the overlapping between data
encodings, e.g., IsOverlapping and CountOverlapping decide
whether and how many data fields encoded by two views
are overlapping.

Layout arrangement relationship features concern the
relationships of both the sizes and relative layouts of two
views. For the former, we similarly apply aggregation to
compare the sizes between two views, e.g., IsLarger com-
pares whether the size of one view is larger than the other.
For the latter, we compute the relative angle and distances
between two views. We further introduce IsNeighbour to
decide whether two views are adjacent.

Coordination features describe the interactions between
two views. As mentioned in Section 3, there are two types
of coordination in Tableau, namely brushing and filtering.
Specifically, filtering removes irrelevant data objects while
brushing highlights the related visual elements and keeps
the context [35].

4.2 Design Rule Mining
The goal of DMiner is to find effective arrangements and
coordination for the multiple views of a dashboard. Thus,
we aim to model the mapping from data and encoding
features to arrangement and coordination as well as the in-
terrelations between arrangement and coordination within
multiple dashboard views, as shown in Figure 4. Here,
we adopt the decision rule approach [41] to achieve this
goal. The reasons for choosing the decision rule approach
are as follows: 1) it allows us to investigate the mutual
influences among those features in a data-driven manner;
2) it embraces algorithmic explainability and is easy for
humans to interpret. Specifically, given a set of dashboard
features F as detailed in Figure 5, we aim to mine rules
that imply X ⇒ Y , where X,Y ⊆ F . All these rules
are automatically learned and extracted from the collected
dashboard dataset.
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Single-View Feature

SingleViewFeature :=  | 

:= CountFunc(DataEncodingAttribute)

DataEncodingAttribute := DataType | DataAggregation | Encoding

DataType := numerical, nominal, ordinal

DataAggregation := count | sum | ...

Encoding := position | size | color | shape 



:= Position | Size | GridOccupancy

Position := X | Y, Size := Height | Width | Area

X/Y/Height/Width := <Number>

GridOccupancy:= <Matrix>


DataEncoding

DataEncoding 

LayoutArrangement



LayoutArrangement 

PairwiseViewFeature :=  | |

:= AggregationFunc(View1, View2, DataEncodingAttribute)

AggregationFunc := IsEqual | IsLess | IsMore | IsOverlapping | ...

OverlapCalcFun := IsOverlapping | CountOverlapping



:= SizeRelationship | RelativeLayout

SizeRelationship := AggregationFunc(View1, View2, SizeAtttribute)

RelativeLayout := Angle | Distance | IsNeighbour

Angle/Distance := <Number>



:= brush | filter | none

DataEncodingRelationship LayoutRelationship

LayoutRelationship 

Coordination



Coordination 

DataEncodingRelationship

A Pairwise-View FeatureB

Colored cells are marked 
as 1 and remainings are 0. Notation: A := X | Y  means that A is either X or Y.


Note: The listed features are either <Boolean> or <Number> or <Nominal> values.

IsEqual (View1, View2, color)  

% whether two views encode the 
same attribute for the color channel

IsLarger (View1, View2, area)  

% whether view1 is larger than view2 
in terms of area

Figure 5. The formal definition and representation of extracted features. We classify features into single-view and pairwise-view features: (A) The
former describes data, encoding, and layout of a single view. (B) The latter describes relationships of data, encoding, and layout between two views
as well as the coordination.

Model Selection. As mentioned above, we have for-
mulated the problem as mining decision rules. To solve
the problem, we chose one of the decision rule algorithms,
RuleFit Binary Classifier [42]. It is efficient since it produces
a set of unordered independent rules, which can be checked
in parallel rather than in series [43]. The extracted rules
of RuleFit follow the structure: condition → target with
each rule’s coefficient and importance. The coefficient and
importance of a rule describe how and how much the
condition contributes to the target. Specifically, if the condition
is obeyed, then the corresponding target tends to be true for
positive coefficients and false for negative coefficients.

Feature Processing. Since the condition and the target of
rules extracted by RuleFit have to be Boolean variables,
we need to process the extracted features before feeding
them into the model. Specifically, we convert numerical
and categorical features into Boolean variables by setting
thresholds or asserting equivalence. To handle numerical
values, we set manual thresholds by splitting the interval
by the average value of two-edged cut-offs (i.e., larger or
smaller than the mean). The purpose of two-edged cut-
offs is to improve interpretability. It can be challenging for
humans to understand more intervals, e.g., the distance of two
views smaller than 0.5 is easier for sense-making than the dis-
tance either within (0.0, 0.15] or (0.3, 0.45]. The final derived
Boolean features are represented using binary vectors [44].

Training and Post-processing. We train a RuleFit binary
classifier for each target feature of each mapping identified
in Figure 4. In total, we train 208 models. Specifically, to
increase the interpretability of the rules, we reduce the
condition complexity of each rule by limiting each condi-
tion with at most 2 features [45]. We randomly partition
dashboards into a 75% (640) training set and a 25% (214)
test set. The trained models achieve an average of 73%
accuracy on the training set and 71% accuracy on the test set.
Considering the huge amount of models, we select the top 3
rules with positive coefficients and the highest importance
for each model to avoid overfitting issues, resulting in 624
decision rules.

4.3 Recommender

Given the design rules extracted in Section 4.2, the recom-
mender of DMiner (Figure 1 (C)) can further automatically
recommend appropriate view arrangement coordination for
the views of a dashboard. Figure 6 provides an overview
of the recommender pipeline. Similar to prior optimization-
based visualization recommendation approaches [46], our
recommender also enumerates all the possible designs and
recommends the designs with the highest scores. Specifi-
cally, it first searches all possible arrangements (i.e., po-
sitions and sizes for each view) to generate candidates.
Then, it computes the score for each candidate by checking
whether it obeys or violates the extracted decision rules.
Inspired by [20], the cost score is a weighted sum of violated
decision rules, since different rules make different contribu-
tions to the final designs. We use the importance of each
decision rule as the weight, which measures how the rule is
important to the prediction introduced in Section 4.2.

However, it is time-consuming and infeasible to calculate
scores for all candidates. The number of possible candidates
is huge, since it grows exponentially with the number of
views. To reduce the computational complexity, we adopt
the common strategy in previous studies on visualization
recommendations (e.g., SeeDB [47] and QuickInsights [48]),
i.e., pruning, to balance efficiency and performance. We
first consider only the rules that map Single-view data
and encoding features to Single-view layout arrangement
features (denoted as S2S rules), since it only considers single
view and has smaller complexity than pairwise-view com-
putations. The top 1% recommendations with the highest
average score are subsequently fed into the next step, i.e., to
compute scores based on all other rules. The percentage
1% is decided on an empirical basis to reduce the running
time to seconds, which is desirable in real-world scenarios.
Finally, we recommend the arrangement and coordination
with the highest score.

5 EVALUATION

To evaluate DMiner, we conducted an expert study to
evaluate the appropriateness of our extracted design rules
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Figure 6. The recommender framework. Given several views and pre-computed possible arrangements, we first generate the candidate dashboards.
Then we apply S2S rules to prune unreasonable candidates to improve efficiency. The remaining candidates are further assigned scores and ranked
using other rules. Finally, we recommend the candidate with the highest score.

(Section 5.1), as well as a user study to demonstrate the
effectiveness of the recommender (Section 5.2).

5.1 Expert Study

We conducted a study with four dashboard design experts
to gather their quantitative and qualitative feedback about
the appropriateness of the extracted design rules. We pre-
sented the design rules extracted by our approach to the
experts, and asked them to indicate the extent to which the
extracted rules match their expert knowledge of dashboard
designs. To demonstrate the effectiveness of our approach,
we discussed the top 5 rules with the highest appropriate-
ness scores in detail (Table 1) and summarized the feedback
from the experts.

5.1.1 Study Setup
Design Rules. It is time-consuming to ask our experts to
evaluate all the extracted rules. Thus, we selected Top 10%
(62) rules with the highest accuracy on the test dataset.
To increase the readability, we translated rules into natural
language sentences. For example, the rule in Figure 7 (1) was
translated into “If View A is Text, and it does not have fields
on Y-axis, then View A should be of the height of 1”. Moreover,
considering that some rules may present similar conditions
or semantic meanings, we further organized them into 22
processed rules. For example, the second and the third rule
in Table 1 were merged from several rules with the same
if conditions. These 22 processed rules with the associated
original rules were presented for the experts to evaluate and
justify their validity.

Participants. We invited 4 experienced visualization or
dashboard design experts (3 males, with age 31.25 ± 2.87).
Expert 1 (E1 for short), a full professor at a local university,
has engaged in visualization analytics for ten years, and has
been working on MV dashboard design for the past few
years. E2 has worked as a research scientist in a company for
nine years, specializing in using dashboards for text analyt-
ics and business analysis. E3, a research assistant professor,
has been designing dashboards for spatial-temporal data
analytics for the past seven years. E4, a strategy analyst in
a finance company for 3.5 years, needs to analyze trading
data daily using dashboards. None of them is color-blind.

Procedure. Each expert study lasted about 1.5 hours, and
we sought the experts’ consent to record the entire process.
The studies were preceded by a 10-minute introduction

to our work, including the goals and the corresponding
features in Section 4.1. In the expert studies, each expert was
presented with 22 processed rules with 62 original rules.
Also, we provided a user interface for experts to explore
some supporting example dashboards for each original
rule. Experts were asked to score the appropriateness of 22
processed rules on a 7-point Likert scale from 1 (the least
reasonable) to 7 (the most reasonable) and give qualitative
feedback about their scores. All the experts were encouraged
to think aloud throughout the process.

5.1.2 Result Analysis
Our extracted design rules were appreciated by the experts.
Considering that each processed rule represented a different
number of original rules, we got a weighted average score
of 4.44 ± 1.32, with the number of original rules as the
weight. According to the qualitative feedback from experts,
our extracted design rules were reasonable and aligned well
with their design knowledge, thus reducing the burden of
dashboard design. E4 commented that our rules used low-
level and more specific features, and were therefore easier to
understand and follow. In this subsection, we present the
top five rules with the highest average scores (Table 1), and
summarize the feedback from the experts. An example case
is used to illustrate four of these rules, as shown in Figure 7.

Table 1
This table shows the top 5 rules that received the highest score from

the experts.

No. Rule Score
1 If View A is Text (not Text table), then View A should

be of the height or width of 1.
6.5

2 If View A and View B are of the same chart type, and
they use the same fields on Y-axis, then View A should
be to the left or right of View B.

6.5

3 If View A and View B share more than 50% of the same
fields, and they use color for the same fields, then View
A should brush View B or View B should brush View
A.

6.25

4 If View A is Text (not Text table), then View A should
be on the top right, top left, or top of other view types.

6

5 If View A has more fields than View B, then View A
should be on the bottom right, bottom left, or bottom
of View B.

5.5

Adjust the size of the view according to the importance
of the view. The first rule receiving a score of 6.5 from
experts is that the Text view (not the Text table) tends to
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D

A

B C

E

F

Category Segment Month Profitable? Latitude Longitude Measures

Technology Corporate Aug-17 Profitable 45.0189 0.4646 (£428, £193, 0.45, £193, £428.22, 0, 3)

Office Supplies Consumer Jun-17 Unprofitable 52.16 -0.7 (£138, -£12, -0.09, £12, £138.11, 0.1, 5)

ViewId Mark X Y Color #Field
A Text Measures 1
B Map Longitude Latitude Profit 3
C Area Month [Category, sum(Sales)] Profitable? 4
D Area Month [Segment, sum(Sales)] Profitable? 4

A.Mark = Text

A.#Y < 1
A.Height = 11

A.#Y < 1
Angle(C, A) = TopLeft

Angle(B, A) = TopRight

Angle(D, A) = TopLeft

A.Mark = Text3

Coordination(C, D) = Brush

Coordination(D, C) = Brush

C.Color = D.Color2
Overlap(C.Field, D.Filed) 

> 50%

4
B.#Field < D.#Field Angle(B, D) = BottomRight

A.#Field < B.#Field Angle(A, B) = BottomLeft

Figure 7. An example dashboard to illustrate identified design rules. The dashboard consists of four views, (A) - (D). Part of the data and the
information of each view in the dashboard are shown in two tables, (E) and (F), respectively. In the dashboard, the application of four design rules
((1) - (4)) has been observed. For example, (1) represents that the height of Text view in (A) tends to be 1, and (3) describes that this Text view in
(A) tends to be placed on top of other views.

have the smallest width or height, such as Figure 7 (A) and
(1). E2 and E3 confirmed that “Text view is usually used as an
assistive view to describe the data analysis purpose and does not
have too many meanings. Thus, it is often equipped with either
the smallest height or the smallest width”. E1 mentioned that
“This reminds me that the size of the view should be related to the
importance of the view, especially given the limited space available
in the dashboard”.

Configure the two views used for comparison in a
similar and close manner. The second rule is that, if two
views possess the same mark type and use the same fields
on the Y-axis, they are preferred to be arranged side by side
(score = 6.5). All the experts inferred that these two views
were for comparison, and recognized that they preferred
to arrange views horizontally for comparison. E4 gave this
rule a score of 7 and commented, “Two views with the same
chart type and Y-axis must be in the same information hierarchy
in a dashboard. I would not hesitate to arrange them side by
side”. Both E2 and E4 said that the views for comparison
should be configured “as similar as possible, like the same
width, the same height, and the same scale”. In this way, users
can compare them effectively. While E3 mentioned, “In some
cases, I might also arrange two comparison views vertically, if
there are also other views that need to be arranged horizontally.
However, most of the time, I prefer the horizontal orientation”. E1
pointed out, “This condition reminds me of the concept of ‘small
multiples’ (proposed by Tufte [37]), which describes the practice of
arranging two views of the same visual type together to facilitate
comparison”.

Add some necessary coordination to facilitate data
exploration. The third rule is about coordination, i.e., if
two views encode the same fields in color and use more
than 50% of the same fields, they will be coordinated by
the brushing (score = 6.25). For example, as described in
Figure 7 (2), Views (C) and (D) have a total of 5 fields, with

4 being identical, so 80% of the fields are shared. Moreover,
both of them present the field Profitable? using colors, so
that they brush each other. E3 mentioned, “This coordination
is necessary, since it can help users identify the related points in
another view and thus explore the data efficiently”. E4 pointed
out, “This is really useful if there are too many colors or objects
in one view, like a scatterplot”.

Overview first, then details-on-demand. The last two
rules are about the relative position of views. The first one
shows that Text view (not Text table) tends to be on the top
right, top left, or top of the other view types (score = 5.5).
For example, Figure 7 (A) was arranged on the top left or
top right of the other three views, as described in Figure 7
(3). E1 said, “Text view providing the statistical values works
as an overview and attracts the audiences’ attention. Hence, the
overview should be at the top of a dashboard”. While E2 and E4
argued, “it is correct to put the statistical Text view at the top, but
the word cloud should not always be put at the top”. The last rule
is that if View A encodes more fields than View B, then View
A prefers to be on the bottom left, bottom right, or bottom of
View B (score = 5.5). E3 mentioned, “the view with more fields
tends to be more detailed than the view with fewer. According to
Schneiderman’s visualization mantra ‘overview first, then details
on demand’ [49], the view with more fields should be at the bottom
or on the right”. E4 agreed, “the view with fewer fields may have
more coarse information, thus having a higher hierarchy at the
top”. E2 considered that “the overview should be a simple view
with fewer fields”. For example, Figure 7 (4) described that
View (A) had the least fields, thus being arranged on top of
other views. While View (D) encoded more fields than View
(B), i.e., 4 vs. 3, then View (D) was put at the bottom right of
View (B).

Limitations and lessons. We also received some feed-
back on those processed rules with low scores, which can be
summarized into two main reasons, i.e., different personal



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

experiences and shortcut learning of the algorithm. From
personal experience, experts may have different opinions
on a few rules. For example, the rule, Scatterplot should
be put on the right-most, received a score of 3.5 ± 1.73,
denoted as the 6th rule. E1 mentioned, “I have previously
used scatterplots to show specific details, such as the distribution
relationship of certain variables in two selected cities. I tend
to put the detailed view on the right. Thus, I agree with this
extracted rule”. In contrast, E3 often used T-SNE to reduce
high-dimensional data to a two-dimensional scatterplot to
overview the system. Therefore, he thought “the scatter plot
should be on the left or top rather than right-most”. Another rule
with a higher score variance of 1.91 is that the view raising
brushing should have a width or height of 3 or 4, denoted as
the 7th rule. E4 has developed systems that use slender
panels on the left or wide panels on the top. Thus, she
thought it was reasonable for views raising brushing to have
a larger width and height. While E3 mentioned that “the view
proposing brushing should be a high-level view and therefore have
a smaller size. 3 or 4 is too large for such a view”. Another
problem is that the decision rule approach learns some
highly-correlated relationships between attributes but lack
semantics for humans to interpret. For example, for the rule
(If View A and View B encode the same field in color, then the
height of View A or View B is 3), E2 commented that “DMiner
may derive this rule from the rules mentioned before (the 3rd
rule and the 7th rule). However, it is challenging for humans to
understand such a derivation or inference and make sense of this
rule ”.

5.2 User Study
We conducted a user study with 12 participants to compare
6 methods of designing MV dashboards and collect their
feedback about the effectiveness of our approach for recom-
mending appropriate MV dashboards.

5.2.1 Study Setup
Participants. We recruited 12 participants (9 females and 3
males, ages 22 to 27, with an average of 24.8) by posting
online advertisements on social media platforms (e.g., email
and microblogging websites). They are all well-educated (7
PhD students, 3 MSc students, 1 research assistant, and 1
data analyst) and from diverse backgrounds, including visu-
alization (4), data science (3), finance (2), human-computer
interaction (2) and recommendation system (1). None of
them has color blindness. All the participants are experi-
enced in the data analysis according to their self-reports on
a 7-point Likert scale (µ = 5.25, σ = 0.45), where 1 indicates
“no experience” and 7 represents “highly experienced”.
Each participant was compensated with $10 after finishing
the user study.

Dashboards and Baseline Methods. We selected 15
dashboards from the test dataset covering almost all the
mark types (10/13) and various topics (e.g., business,
COVID-19, and patient analysis). The number of views
ranges from 3 to 8, obeying the distribution in Figure 3 (A).
To evaluate the effectiveness, we built a comparative group
designed by five experienced designers (3 females and 2
males, aged 27 ± 2.74). Two are postdocs at the university,
focusing on the visual analytics of computational social sci-
ence and narrative storytelling, respectively. The remaining

three designers are data analysts in automobile, outlet malls,
and retail companies. They are all experienced in data anal-
ysis (with an average of 4.1 years) and dashboard design
(with an average of 3 years). Each designer was randomly
assigned three dashboards. They were given the views of
each dashboard and started their design after becoming
well familiar with the view content. Specifically, the design
space of the dashboard was fixed at the common display
size of 1080p (i.e., 1920 x 1080) to enable comparisons. All
designers finished the design in around 1 hour with $15
compensation. In this study, we leveraged 6 methods to
recommend appropriate designs for 15 dashboards. The 6
methods are as follows:

• Default: the Default dashboard designs recommended
by Tableau [5]. Note that Tableau does not support
the recommendation of coordination. Thus, the corre-
sponding dashboards do not have coordination;

• DMiner-Basic: the dashboard designs recommended by
DMiner-Basic using design rules concerning only the
single-view data and encoding features;

• DMiner-Partial: the dashboard designs recommended
by DMiner-Partial considering part of design rules,
i.e., all black relationships in Figure 4, and ignoring
those rules on interrelations between arrangement and
coordination;

• DMiner-Full: the dashboard designs recommended by
DMiner-Full considering all extracted design rules;

• Human: the original dashboard designs we crawled
online, which are designed by general Human users;
and

• Designer: the dashboard designs created by the re-
cruited experienced Designers.

The above 6 methods were used to recommend dash-
board designs for a given dashboard. All the generated
dashboard designs were of consistent size (i.e., 1920 x 1080
pixels), except for Human, whose corresponding dashboard
design was in the original size. For the selected 15 dash-
boards, it took designers around eight minutes to design a
dashboard. Our three methods speeded up this process by
a factor of eight. In addition, our three methods generated
designs within five seconds for dashboards with fewer than
six views. For simplicity, the resulting six dashboard designs
are called a dashboard group. Therefore, we presented 15
dashboard groups for participants to evaluate their design
effectiveness.

Procedure. The user study lasted about 1.5 hours, and
we gained participants’ consent for video recording the
whole user study. During the user study, we first briefly
introduced our work. Then, due to the long time cost of eval-
uating dashboard designs, we randomly split the 15 dash-
board groups into 3 clusters (each with 5 dashboard groups).
Each participant was asked to score the arrangement and
coordination of 1 cluster (i.e., 5 dashboard groups). For each
dashboard group, the 6 dashboard designs were ordered
randomly and anonymously assigned to participants. Thus,
each dashboard group was evaluated by 4 participants. Be-
fore participants started to evaluate each dashboard group,
we introduced every dashboard view that needed to be
arranged. Once participants were familiar with these views,
they freely explored the dashboards for around ten minutes.
After the free exploration, they further scored the dashboard
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Figure 8. An overview of the study result. Specifically, each column describes the score of a metric in three clusters, i.e., the cluster considering
all dashboards, the cluster with 3- and 4-view dashboards, and the cluster with 5- to 8-view dashboards. Six metrics cover 3 perspectives,
i.e., arrangement, coordination, and overall (i.e., both). Each sub-plot presents the score of 6 methods regarding the corresponding metric and
cluster. The error bars are 95% confidence intervals. [ indicates the significant difference between a pair of methods (p < 0.05).

designs using a 7-point Likert scale. Participants were asked
to evaluate their arrangement (including logic, aesthetics,
and helpfulness), coordination (including logic and helpful-
ness), and overall, which refers to the previous studies [29],
[50]. Specifically, the logic measures how well the arrange-
ment and coordination follow human users’ logical analysis
workflow [51]. The helpfulness describes how well the ar-
rangement and coordination help users analyze and explore
data. The aesthetics evaluates how users perceive the visual
appearances of the dashboard arrangement, while the overall
score measures how well the dashboard has been designed
concerning both the arrangement and coordination. All the
participants were encouraged to report why they gave the
corresponding scores in a think-aloud manner.

5.2.2 Result Analysis

This section introduces and discusses results from the user
study, including the ratings and the corresponding qualita-
tive feedback. We received positive feedback on the recom-
mender of DMiner. Participants appreciated the automated
dashboard designs in terms of both arrangement and co-
ordination by our approach. Participant 11 (P11 for short)
commented, “I hope it can be integrated into my workflow,
[...], I believe it will greatly facilitate my analysis process”. To
analyze the results, we further split all dashboards into
two dashboard clusters according to the number of views
in dashboards, i.e., the dashboards with 3-4 views and
the dashboards with 5-8 views. The rationale for the split
stemmed from the feedback from our participants. They
indicated that they cared more about the arrangement and
coordination when the number of views is more than 4,
since a well-organized dashboard can reduce their cognitive
load of viewing many visualizations. We performed the
one-way ANOVA to compare the six methods across six
metrics and three dashboard clusters with different view

numbers (i.e., 3 and 4 views, 5 to 8 views, and all). LSD post-
hoc tests were used if the scores obeyed the homogeneity of
variance test; otherwise, Tamhane’s T2 post-hoc tests were
used [52]. Detailed information, including the average rat-
ings, standard deviation, and post-hoc results, are presented
in Figure 8. Figure 8 shows that all the other methods
achieved better results than Default on all metrics, except
for the 3- and 4-view dashboard arrangement. Specifically,
Default mainly scored below 5, while the other five methods
scored mostly above 5. In the following, we first introduce
some interesting results regarding arrangement, coordina-
tion, and overall performance, then summarise these results,
and finally discuss some recommendations that can be fur-
ther improved.

Arrangement. For logic, Figure 8 shows our method
DMiner-Full was not significantly different to Designer and
Human regardless of the number of views. Specifically, it
was slightly better than Human for 3- and 4-view dash-
boards. Moreover, our method DMiner-Full performed sig-
nificantly better than Default for 5- to 8-view dashboards
(p < 0.01). Figure 9 (A) provides one example, where
(a) was created by Human and (b) was the recommended
dashboard design by DMiner-Full (with an average score of
logic as 5 and 5.25, respectively). Participants recognized
that the arrangement logic of (b) was better than (a), since
(b1) was more suitable than (a1) to act as a starting point to
guide the data analysis. Furthermore, DMiner-Full achieved
better arrangement logic than Default for dashboards with
5 to 8 views. Participants acknowledged that the arrange-
ment logic was essential for dashboards with many views,
while Default arranged the views alphabetically by view
name, leading to worse logic that confused participants. For
aesthetics, our method DMiner-Full offered a slightly better
visual aesthetic design than Default. Participants appreci-
ated that DMiner-Full set different sizes for different views,
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Figure 9. (A) is a case identified in our user study, and (B) is the coordination type distribution. In (A), (a) and (b) were the dashboards created
by Human and our method DMiner-Full, respectively. Our recommended dashboard was highly rated due to outstanding arrangement logic and
coordination type (see (a5) and (b5)). Participants recognized that (b1) was more suitable than (a1) to act as a starting point to explore the
dashboard. For the same view pair, our recommended coordination type was brushing, which kept the context for comparison. However, Human
chose filtering, which led to a change in the display and confused the users. In (B), our three recommenders (i.e., DMiner-Basic, DMiner-Partial
and DMiner-Full) suggested more coordination than Human.

which was better than Default which set all views with equal
width and height. P8 mentioned that “when there are too
many views, there should be a dominant one telling me what it
is attempting to express. The exactly-equal size confuses me, and
it is challenging for me to identify what I should pay attention
to first”. Moreover, participants suggested that arrangement
aesthetics was less important compared to arrangement
logic for facilitating data analysis. Thus, for helpfulness,
Figure 8 shows observations similar to the logic.

Coordination. Figure 8 shows that all our methods
(i.e., DMiner-Full, DMiner-Partial, and DMiner-Basic) offered
significantly better coordination than Default in terms of
logic and helpfulness, regardless of the number of views
(with all p < 0.001). Furthermore, DMiner-Partial and
DMiner-Full performed similarly to Human and Designer in
5- to 8-view dashboards, and were significantly better than
Human in 3- and 4-view dashboards (with all p < 0.05).
Participants all confirmed the indispensability of the co-
ordination among views in a dashboard. P1 mentioned,
“Without coordination, it is challenging for me to identify the
related data across views and focus the data of interest”. As
shown in Figure 9 (B), compared to Human, participants
appreciated that our methods were equipped with more
brushing or filtering between views for dashboards, as it
provided a stronger power of exploration. Moreover, P5 and
P11 appreciated the coordination type recommended by our
approach in some cases. They mentioned, “Filtering can help
identify relevant information efficiently in those views with many
visual elements, such as text tables with thousands of lines of text.
Brushing works better for those views without visual clutter, since
it maintains context and enables comparisons”. For example,
as shown in Figure 9 (A), (a5) was the filtered result of
(a2), while (b5) was the brushed result of (b4). It is clear
to see that (b5) well preserved the context before and after
the interaction. That is why our three methods gained the
highest coordination score for 3- and 4-view dashboards.

Overall. From Figure 8, our method DMiner-Full
achieved significantly better results than Default regardless
of the number of views (with all p < 0.001). Moreover, com-
pared to Human and Designer, the average scores obtained
by DMiner-Full were similar without significant differences,
except that DMiner-Full performed significantly better than
Human for 3- and 4-view dashboards (p < 0.01). Participants
mentioned that the arrangement of views in dashboards

was slightly more important than the coordination for data
analysis, especially for dashboards with more views. For 3-
and 4-view dashboards, DMiner-Full was significantly better
than Human, as DMiner-Full can achieve similar arrange-
ments as Human, but with much better and more coordina-
tion. Regardless of the number of dashboards, our method
DMiner-Full achieved similar performance to Designer.

Summary. In summary, DMiner-Full performed signifi-
cantly better than Default for dashboards with more views,
and similarly to Human and Designer without significant
differences. It was the best among our three methods, fol-
lowed by DMiner-Partial, and then DMiner-Basic. With an
increased number of views, DMiner-Full and DMiner-Partial
always performed better than DMiner-Basic, demonstrating
the importance of the pairwise-view relationship in model-
ing complex dashboards. Moreover, no significant difference
between Human and Designer in 6 metrics was observed,
indicating the quality of our collected dashboard dataset.
Figure 10 shows an example where Human and Designer
had different designs given the same views, where (A) was
created by Designer and (B) was created by Human. Designer
regarded (A1) as an overview to analyze the bike trips
every day in a week, while Human adopted (B1) as the
overview to analyze the most common trips that bike riders
like. Participants recognized that they had different analysis
focus, and both were designed with plausible arrangement
and coordination (both with average scores larger than 5.75).

Limitations. DMiner occasionally provides some recom-
mendations that can be further improved. According to par-
ticipants’ feedback, the underlying reasons for it stems from
two perspectives, i.e., without considering the number of
visual elements within each view and the semantic meaning
of data. Take Figure 10 as an example, where the MV dash-
board designed by Designer (A), Human (B) and our method
DMiner-Full (C) are shown. Compared with Figure 10 (A2)
and (B1), the same view in the dashboard design recom-
mended by our approach (Figure 10 (C2)) does not have
enough space to show the heatmap. The underlying reason
for such a result is that DMiner does not explicitly consider
the number of visual elements (i.e., many rectangles in the
heatmap) due to the lack of underlying data tables. Also,
a few participants pointed out that Figure 10 (C) placed
the line chart showing the “Peak in Winter” above the
line chart displaying the “Peak in Summer”, which was
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Figure 10. A case identified in our user study. (A) is created by Designer , (B) is created by Human, while (C) is created by our method DMiner-Full.
(A) and (B) received similar scores in all metrics (with a difference of less than 0.5), though they have different designs with different analysis
focus. DMiner-Full in (C) received a lower score, and our participants pointed out that the arrangements should be improved from two perspectives,
i.e., the size of (C2) should be equipped with more space like (A2) and (B1), and (C1) about “winter” should be above (C3) about “summer”.

contradictory to their expectation, i.e., the line chart for
“Summer” should be positioned above that for “Winter”.
Unfortunately, such semantic meanings of the data are not
considered in DMiner.

6 DISCUSSION

In this section, we further discuss a few issues that need
further clarification regarding DMiner.

High-quality multiple-view dashboard dataset con-
struction. Recent years have witnessed an increasing in-
terest in applying AI and machine learning (ML) for vi-
sualization research [46], [53], where high-quality datasets
are fundamental to making the AI/ML-based approaches
work well in practice. However, little research has been
dedicated to constructing large-scale, high-quality multiple-
view dashboard datasets. In this paper, we construct a dash-
board dataset by crawling GitHub repositories. However,
the designers of the dashboards published on GitHub may
have different levels of visualization expertise. Our results
in Section 5.2.2 have shown that our collected dashboard de-
signs (i.e., Human in Figure 8) are not significantly different
to those designed by Designer in Figure 8. We believe that the
quality of the dashboard designs can be further improved.
For example, appropriate dashboard designs also depend
on other important factors like target users, user intention,
and analysis tasks, which, however, are not included in our
current dashboard dataset. Thus, we would encourage the
whole visualization community to contribute more high-
quality and informative dashboard datasets.

Human agency vs. machine automation. DMiner pro-
poses a data-driven framework to mine design rules and
automatically recommend dashboard designs. Our evalua-
tion in Section 5.2.2 has shown that the dashboard designs
recommended by DMiner (i.e., DMiner-Full) are not sig-
nificantly different from those created by experienced de-
signers. Recent research on visualization recommendations
has tried to balance human agency and machine automation
by keeping humans in the loop [54]. For dashboard design
recommendations, it is worth further exploring how the
human agency can be involved in dashboard design mining.
For instance, it will be interesting to investigate how expert
knowledge can be incorporated into refining the extracted
design rules for dashboards and further improve the quality
of recommended dashboards.

DMiner for dashboards created by other software or
packages. In this paper, DMiner extracts dashboard de-
sign rules from our collected dashboard datasets created
by Tableau, one of the most popular software for creating
multiple-view dashboards, and is further evaluated on only
Tableau dashboards. However, DMiner can be extended
to dashboards created using other software or packages.
For example, the source files of dashboards created by
Power BI [6] also specify visual coding, data operation, data
types, and arrangement and coordination between views
in a dashboard, which is quite similar to those of Tableau.
With a proper data parsing module, DMiner can also work
for dashboards by Power BI. However, this requires con-
siderable research and engineering efforts to improve the
interoperability, since different visualization software and
packages have different methods for specifying and render-
ing visualizations [55]. With more multiple-view dashboard
datasets available in the future, we would like to extend
DMiner further to various dashboard datasets.

More factors for dashboard design. DMiner has consid-
ered a series of features, including data and visual encoding
characteristics, for designing dashboards in terms of the
arrangement and coordination of its views. However, our
evaluation result in Section 5 has demonstrated its effective-
ness. However, there exist other factors that warrant future
research. As pointed out in Section 5.2.2, the semantic mean-
ing of the visualized data can also influence the arrangement
and coordination of dashboard views. For example, it is
better to arrange the views showing the data of different
seasons in the order of spring to winter (Section 5.2.2).
Also, the decision rules of DMiner focus on the effects of
single features, and it will be interesting to further explore
the combined effects of multiple feature types in a single
decision rule for dashboard design.

7 CONCLUSION

This paper proposes DMiner, a data-driven framework for
mining dashboard design and recommending appropri-
ate arrangement and coordination for multiple-view dash-
boards. Building upon our Tableau dashboard dataset col-
lected from GitHub, DMiner extracts a series of relevant
features, i.e., single-view and pair-view features in data and
encoding, arrangement and coordination. With these fea-
tures, DMiner employs a decision rule approach to mine the
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design rules from the collected Tableau dashboard dataset.
Further, a recommender is proposed to recommend appro-
priate arrangements and coordination of dashboard views.
We conduct an expert study and a user study to evaluate
the effectiveness of DMiner. The expert study demonstrates
that the extracted design rules are reasonable and align
well with the design practices of experts. The user study
further confirms that the dashboard designs recommended
by DMiner, considering all design rules, are not significantly
different from those of experienced designers. They are also
significantly better than those using the default settings of
Tableau in both arrangement and coordination. In summary,
as the first work for automating dashboard arrangement
and coordination, DMiner is appreciated by visualization
experts and study participants who need to design and
use dashboards for data analysis. In the future, we hope
to further improve the efficiency of our recommender for
dashboards with more views. It is also promising to regard
DMiner as a feature and integrate it into existing visualiza-
tion authoring tools, such as Voyager [22], to help designers
in their daily work.
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